Unusual hadron states observed at B-factories

Miriam Fritsch on behalf of the BaBar-Collaboration

May 20, 2011 NSTAR 2011, Jefferson Lab

HI Mainz Universität Mainz

Helmholtz-Institut Mainz

UNIVERSITÄT MAINZ

BaBar Detector

Asymmetric e⁺e⁻ collider PEP-II, SLAC \sqrt{s} =10.58 GeV, Y(4S)

Superconducting Luminosity Solenoid Ύ(4S) ~ 432.9 fb⁻¹ **Electromagnetic** e+ (3.1 GeV) **Calorimeter (EMC)** ~ 450 x 10^6 BB pairs ~ 450 x 10⁶ τ pairs PID (DIRC) $\sim 650 \times 10^6$ Charm pairs e- (9.0 GeV Υ(3S) ~ 30.2 fb⁻¹ Υ(2S) ~ 14.5 fb⁻¹ Vertex Tracker (SVT) **B-factory KEK-B Central Tracker** μ Detector (IFR) with BELLE ($L_{int} > 1 \text{ ab}^{-1}$) (DCH)

Physics topics at B-factories

Miriam Fritsch

Charmonium Spectroscopy

Potential of the Strong Interaction

Perturbative QCD

small distances Coulomb-like potential one gluon exchange asymptotic freedom

Potential of the Strong Interaction

Perturbative QCD

small distances Coulomb-like potential one gluon exchange asymptotic freedom

Non-perturbative QCD

large distances linear potential confinement

Potential of the Strong Interaction

Perturbative QCD

small distances Coulomb-like potential one gluon exchange asymptotic freedom

Non-perturbative QCD

large distances linear potential confinement

Charmonium Spectroscopy

transition region

Charmonium Spectrum (cc-Mesons)

S.Godfrey and N.Isgur (1985)

Charmonium Spectrum (cc-Mesons)

S.Godfrey and N.Isgur (1985)

Examples for allowed hadronic states

Miriam Fritsch

Unusual hadron states observed at B-factories - May 20, 2011

Charmonium – different internal structure ?

K.J. Juge, J. Kuti, C. Morningstar hep/lat 9709131

Spectrum of Hybrids

Begin of Charmonium Spectroscopy

J/ψ 10,000 U 'e⁻ -- hadrons) $p + 8e \rightarrow e^{+} + e^{-} + X$ units) 60 1000 (Arbitrary Res 40 σ (nb) 20 100 3.25 3.0 3.5 2.5 2.75 M GeV 10 3.05 3.10 3.00 3.15 J.E. Augustin et al., MARK I, PRL 33, 1406 (ψ) W (GeV) J.J. Aubert et al., BNL, PRL 33, 1404 (J) $c\bar{c}$ vector ground state (${}^{3}S_{1}$) $1^{PC} = 1^{--}$

Miriam Fritsch

2010

1970

1980

1990

2000

1974

New Charmonium-like Discoveries

Initial State Radiation

e.g. Y(4260)

Initial State Radiation

B-decay

e.g. Y(4260) e.g. X(3872), Z(4430)⁻

Identified ?

Miriam Fritsch

Unusual hadron states observed at B-factories - May 20, 2011

The 3940 family

State	Mass	Width	Production	Found	Not	ЈРС	Exp.
X(3915)	$3915 \pm \ 3$	17 ± 10	ΥY	J/ψ ω	-	? ?+	Belle PRL 104,092001
Y(3915)	$\begin{array}{c} 3914.6 \pm 3.6 \\ 3919.1 \pm 3.6 \end{array}$	$\begin{array}{c} 34 \pm 10 \\ 31 \pm 9 \end{array}$	B-decay	J/ψ ω	-	; ;+	BaBar PRL 101,082001 BaBar PRD 82, 011101(R)
Y(3940)	3943 ± 11	87 ± 22	B-decay	J/ψ ω	-	? ?+	Belle PRL 94,182002
X(3940)	3943 ± 6	39 ± 26	Double cc	D*D	J/ψ ω	? ??	Belle PRL 98,082001

Miriam Fritsch

$Z(4430)^- \rightarrow \psi(2S) \ \pi^-$

in B-decays

 $\rightarrow 6.5\sigma$

Unusual hadron states observed at B-factories - May 20, 2011

Unusual hadron states observed at B-factories – May 20, 2011

Hybrid Candidates with $J^{PC} = 1^{--}$

Confirmed by Belle and Cleo-III PRL 99,182004 PRL 96,162003

Hybrid Candidates with $J^{PC} = 1^{--}$

Search for Y(4260) $\rightarrow D^{(*)}\overline{D}^{(*)}$

Y(4260) above $D\overline{D}$ -threshold:

- \rightarrow Fit with Y(4260) and $\psi 's$
- DD: 0.2 ± 6.1 ± 2.8 Events
- DD
 *: 18 ± 24 ± 21 Events
- D*D*: 9 ± 5 ± 10 Events

$$\frac{\mathcal{B}(Y(4260) \to D\overline{D})}{\mathcal{B}(Y(4260) \to J/\psi\pi^+\pi^-)} < 1.0$$
$$\frac{\mathcal{B}(Y(4260) \to D^*\overline{D})}{\mathcal{B}(Y(4260) \to J/\psi\pi^+\pi^-)} < 34$$
$$\frac{\mathcal{B}(Y(4260) \to D^*\overline{D}^*)}{\mathcal{B}(Y(4260) \to J/\psi\pi^+\pi^-)} < 40$$

at 90% C.L.

No clear message yet !

Search for Y(4260) $\rightarrow \psi(2S)\pi\pi$

New resonance necessary Mass $4324 \pm 24 \text{ MeV/c}^2$ Width $172 \pm 33 \text{ MeV}$ $\rightarrow Y(4350)$

> Confirmed by Belle PRL 99,142002

Two more resonances found by Belle Y(4008) PRL 99,182004 Y(4660) PRL 99,142002 Analysis in BaBar still going on

Miriam Fritsch

Hybrid Candidates with $J^{PC} = 1^{--}$

Hybrid Candidates with $J^{PC} = 1^{--}$

Miriam Fritsch

Unusual hadron states observed at B-factories - May 20, 2011

Exotic hybrid at CDF ?

$Y(4140) \rightarrow J/\psi \phi$ in B-decays

Decay unusal for $c\bar{c}$ Close to threshold $J^{PC} = 0^{++}, 1^{-+}, 2^{++}$

Exotic hybrid ?

	Yield	Mass [MeV/c ²]	Width [MeV/c ²]	Sign.
Y(4140)	14 ± 5	4143.0 ± 2.9	$11.7_{-5.0}^{+8.3}$	3.8σ

Should be enhanced in $\gamma\gamma$ -reactions

Exotic hybrid at CDF ?

$Y(4140) \rightarrow J/\psi \phi$ in B-decays

Decay unusal for $c\bar{c}$ Close to threshold $J^{PC} = 0^{++}, 1^{-+}, 2^{++}$

Exotic hybrid ?

	Yield	Mass [MeV/c ²]	Width [MeV/c ²]	Sign.
Y(4140)	$\begin{array}{c} 14\ \pm\ 5\\ 19\ \pm\ 6\end{array}$	$\begin{array}{l} 4143.0 \pm 2.9 \\ 4143.4_{\text{-}3.0}^{\text{+}2.9} \end{array}$	$\frac{11.7_{-5.0}^{+8.3}}{15.3_{-6.1}^{+10.4}}$	3.8σ >5σ
Y(4300)	22 ± 8	4274.4 _{-6.7} +8.4	32.3 _{-15.3} ^{+21.9}	3.1σ
X(4350)	8.8-3.2+4.2	4350.6 _{-5.1} +4.6	13 ₋₉ +18	3.9σ

- \rightarrow No indication
- \rightarrow But another resonance found, X(4350)

X(3872) Discovery

$X(3872) \rightarrow J/\psi \pi^+\pi^$ in $B \rightarrow X K$

X(3872) - PDG

X(3872) MASS FROM $J/\psi \pi \pi$ MODE

X(3872) Mass Measurements

Mass of X(3872) $\rightarrow D^0 \overline{D}^{*0}$ shifted by ~3 MeV/c² (last Belle result: no shift) PRD 81, 031103 (2010)

X(3872) Properties

Mass around $D^0\overline{D}^{*0}$ -threshold (mass shift ?)

Width <2.3 MeV

Not found in formation in e^+e^- collision \rightarrow Not $J^{PC} = 1^{--}$

Observation of decay into $J/\psi \gamma \rightarrow C=+1$

All decay channels $\rightarrow J^P = 1^+$ or $2^$ decay to $D\overline{D}$ forbidden, D^+D^{*-} mass too high

No charged partner found \rightarrow I=0

m(2 π), m(3 π) and angular analysis \rightarrow more indication for J^P= 2⁻

What could it not be?

Hybrid (m > 4.1 GeV/c^2)

Tetraquark (no charged partner was found)

S-wave(1⁺) $P(\chi^2/NDF)=7\%$ P-wave(2⁻) $P(\chi^2/NDF)=62\%$

X(3872) - Charmonium or Molecule ?

Charmonium?

Mass ok for 2⁻ (η_{c2} , ${}^{1}D_{2}$ cc ground state) Large production rate in B-decays and $\bar{p}p$ -collisions

But:

Large isospin violation in $R_{\rho/\omega}=1$?

Molecule?

$$\begin{split} m(D^0) + m(D^{0^*}) &= 3871.8 \pm 0.4 \mbox{ MeV/c}^2 \\ \mbox{Decay to J/} \psi \rho, \mbox{J/} \psi \omega, \mbox{D}^0 \overline{D}{}^{0^*} \mbox{ expected} \\ \mbox{Compatible with J}^P &= 1^+ \\ \mbox{Large isospin violation } R_{\rho/\omega} &= 1 \end{split}$$

But:

 $BF(X{\rightarrow}\psi(2S)~\gamma)/BF(X{\rightarrow}~J/\psi~\gamma)=~3.4~\pm~1.4$

X(3872) - Charmonium or Molecule ?

Charmonium?

Mass ok for 2⁻ (η_{c2} , ${}^{1}D_{2}$ $c\bar{c}$ ground state) Large production rate in B-decays and $\bar{p}p$ -collisions

But:

Large isospin violation in $R_{\rho/\omega} = 1$?

Molecule?

$$\begin{split} m(D^0) + m(D^{0^*}) &= 3871.8 \pm 0.4 \ \text{MeV/c}^2 \\ \text{Decay to J/} \psi \rho, \text{J/} \psi \omega, D^0 \overline{D}{}^{0^*} \text{ expected} \\ \text{Compatible with J}^P &= 1^+ \\ \text{Large isospin violation } R_{\rho/\omega} &= 1 \end{split}$$

But:

 $BF(X {\rightarrow} \psi(2S) \gamma) / BF(X {\rightarrow} J/\psi \gamma) = 3.4 \pm 1.4$

Lineshape measurement ...

... of all final states with high resolution essential !

The binding among quarks is a long standing issue in hadron physics Exotic and conventional states provide insight into the binding Many new states found in charm sector, structure unknown

- But: Statistics small
 - Detector resolution not sufficient

Next steps

Ongoing analyses on BaBar and Belle

100 times more statistics on SuperB or Belle-2

Search for strangeonium resonances with BESIII

High precision measurement with PANDA ($\bar{p}p$ -experiment)

- Energy scan experiments (resolution 50 keV/c²)
- All quantum numbers accessible

X(3872) at PANDA

Formation reaction

PDG

mass	$3871.56 \pm 0.22 \text{ MeV/c}^2$
width	< 2.3 MeV/c ²
	~ O(1 MeV/c ²)

Simulation at $\sqrt{s} = 3872 \text{ MeV/c}^2$

X(3872) at PANDA

Formation reaction

Simulation at $\sqrt{s} = 3872 \text{ MeV/c}^2$

Future ?

